IOE Control System Note | Plot of root locus & loci | Design lead lag compensator | RH criteria | Bode plot | | By IOE All Subject Notes | |
Root Locus analysis
Steps to sketch root locus in graph
Step1: Plot the open loop poles and zeros.:
Step2: Determine the root loci on real axis.
Step3: Number of root loci
Step4: Centroid of Asymptotes(σA)
Step 5: Angle of asymptotes
(K को different value ले माथिको formula बाट phi को different value आएको हुन्छ त्यो सबै angles लाइ protector को मदत ले σA को point मा Draw गर्ने )
Step6: Calculation of break away or break in point
⇛ The break away point corresponds to a point in the s-plane where multiple roots of
characteristic equation occurs. The break away or break in point can be determined from the roots of
Write characteristic equation i.e. [ 1 +G(s)H(s) ] solve this and get the value of K in terms of S. Then substitute in above equation you will get a quadratic equation and after this use calculator to solve quadratic equation and get Different values of S = ?
👉Dark गरेको axis line मा यी सबै points हरु पर्छ कि पर्दैन conform गर्ने
- पर्ने points = either break in or break away
- नपर्ने points लाइ neglect गर्ने
👉 Another method to check either points are break in | break away or not : put the values of k in the expression of K
- positive र real आयो भने = either break in or break away
- negative वा complex आयो भने = neglect गर्ने
Mark break in or break away points on the graph
Step7: Determine the point where the root cross the imaginary axis.
⇛Write ch. equation and write Routh array table
⇛ Form auxiliary equation and solve to get value of S = ? (imaginary point) plot these in graph
If complex poles are present :👾 we need to draw curve for it
·
Complex pole आयो
भने angle of departure निकालनुपर्छा
.
·
Complex zero आयो
भने angle of arrival निकालनुपर्छा
.
For angle of departure:
For angle of arrival:
- ·
Negative angle आयो भने Reference line भन्दा तल बनाउने
- ·
Positive angle आयो भने Reference line भन्दा माथि बनाउने
Upper angle = - Lower angle
For drawing curve at complex pole :
Complex pole ले के भन्छ मलाई angle of departure संगै मलाई समातेर अनि angle of asymptotes लाई parallel हुने गरि जाऊ।
poles are denoted by x
ReplyDeletewhat about complex pole ?
ReplyDelete